A well-balanced finite volume scheme for 1D hemodynamic simulations

نویسندگان

  • Olivier Delestre
  • Pierre-Yves Lagrée
چکیده

English version: We are interested in simulating blood flow in arteries with variable elasticity with a one dimensional model. We present a well-balanced finite volume scheme based on the recent developments in shallow water equations context. We thus get a mass conservative scheme which also preserves equilibria of Q = 0. This numerical method is tested on analytical tests. Version Française : Nous nous intéressons à la simulation d’écoulements sanguins dans des artères dont les parois sont à élasticité variable. Ceci est modélisé à l’aide d’un modèle unidimensionnel. Nous présentons un schéma ”volume fini équilibré” basé sur les développements récents effectués pour la résolution du système de Saint-Venant. Ainsi, nous obtenons un schéma qui préserve le volume de fluide ainsi que les équilibres au repos: Q = 0. Le schéma introduit est testé sur des solutions analytiques. Introduction We consider the following system of mass and momentum conservation with non dimensionless parameters and variables, which is the 1D model of blood flow in an artery or a vessel with non uniform elasticity (it is rewritten in a conservative form compared to what we usually find in litterature)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupling superposed 1D and 2D shallow-water models: source terms and finite volume schemes

We study the superposition of 1D and 2D shallow-water equations with non-flat topographies, in the context of river flood modeling. Since we superpose both models in the bidimensional areas, we focus on the definition of the coupling term required in the 1D equations. Using explicit finite volume schemes, we propose a definition of the discrete coupling term leading to schemes globally well-bal...

متن کامل

Well - Balanced Finite Volume schemes for 2 D non - homogeneous hyperbolic systems . Application to the Dam - break of Aznalcóllar . ∗

In this paper we introduce a class of well-balanced Finite Volume schemes for 2D non-homogeneous hyperbolic systems. We extend the derivation of standard Finite Volume solvers for homogeneous systems to non-homogeneous ones using the method of lines. We study conservation and some well-balanced properties of the numerical scheme. We apply our solvers to Shallow Water Equations: We prove that th...

متن کامل

Approximation of Hyperbolic Models for Chemosensitive Movement

Numerical methods with different orders of accuracy are proposed to approximate hyperbolic models for chemosensitive movements. On the one hand, firstand second-order wellbalanced finite volume schemes are presented. This approach provides exact conservation of the steady state solutions. On the other hand, a high-order finite difference weighted essentially nonoscillatory (WENO) scheme is cons...

متن کامل

Numerical High-Field Limits in Two-Stream Kinetic Models and 1D Aggregation Equations

Numerical resolution of two-stream kinetic models in strong aggregative setting is considered. To illustrate our approach, we consider an 1D kinetic model for chemotaxis in hydrodynamic scaling and the high field limit of the Vlasov-Poisson-Fokker-Planck system. A difficulty is that, in this aggregative setting, weak solutions of the limiting model blow up in finite time, therefore the scheme s...

متن کامل

A Second Order Well-Balanced Finite Volume Scheme for Euler Equations with Gravity

We present a well-balanced, second order, Godunov-type finite volume scheme for compressible Euler equations with gravity. By construction, the scheme admits a discrete stationary solution which is a second order accurate approximation to the exact stationary solution. Such a scheme is useful for problems involving complex equations of state and/or hydrostatic solutions which are not known in c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1108.6210  شماره 

صفحات  -

تاریخ انتشار 2011